
HOUR 1

Jumping in with Both Feet:
A Visual Basic 2008
Programming Tour

What You’ll Learn in This Hour:
. Building a simple (yet functional) Visual Basic application
. Letting a user browse a hard drive
. Displaying a picture from a file on disk
. Getting familiar with some programming lingo
. Learning about the Visual Studio 2008 IDE

Learning a new programming language can be intimidating. If you’ve never programmed

before, the act of typing seemingly cryptic text to produce sleek and powerful applications

probably seems like a black art, and you might wonder how you’ll ever learn everything

you need to know. The answer, of course, is one step at a time. I believe the first step to

mastering a programming language is building confidence. Programming is part art and

part science. Although it might seem like magic, it’s more akin to illusion. After you know

how things work, a lot of the mysticism goes away, and you are free to focus on the

mechanics necessary to produce the desired result.

Producing large, commercial solutions is accomplished by way of a series of small steps.

After you’ve finished this hour, you’ll have a feel for the overall development process and

will have taken the first step toward becoming an accomplished programmer. In fact, you

will build on the examples in this hour in subsequent chapters. By the time you complete

this book, you will have built a robust application, complete with resizable screens, an

intuitive interface including menus and toolbars, and robust code with professional error

handling. But I’m getting ahead of myself.

8 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

In this hour, you’ll complete a quick tour of Visual Basic that takes you step by step

through creating a complete, albeit small, Visual Basic program. Most introductory

programming books start by having the reader create a simple Hello World pro-

gram. I’ve yet to see a Hello World program that’s the least bit helpful. (They usu-

ally do nothing more than print hello world to the screen—what fun!) So, instead,

you’ll create a Picture Viewer application that lets you view Windows bitmaps and

icons on your computer. You’ll learn how to let a user browse for a file and how to

display a selected picture file on the screen. The techniques you learn in this chapter

will come in handy in many real-world applications that you’ll create, but the goal

of this chapter is for you to realize just how much fun it is to program using Visual

Basic 2008.

Starting Visual Basic 2008
Before you begin creating programs in Visual Basic 2008, you should be familiar

with the following terms:

. Distributable component: The final, compiled version of a project. Compo-

nents can be distributed to other people and other computers, and they don’t

require the Visual Basic 2008 development environment (the tools you use to

create a .NET program) to run (although they do require the .NET runtime,

which I’ll discuss in Hour 23, “Deploying Applications”). Distributable compo-

nents are often called programs. In Hour 23, you’ll learn how to distribute the

Picture Viewer program that you’re about to build to other computers.

. Project: A collection of files that can be compiled to create a distributable

component (program). There are many types of projects, and complex appli-

cations might consist of multiple projects, such as Windows application proj-

ects, and support dynamic link library (DLL) projects.

. Solution: A collection of projects and files that make up an application or

component.

In the past, Visual Basic was an autonomous language. This has changed. Now,
Visual Basic is part of a larger entity known as the .NET Framework. The .NET
Framework encompasses all the .NET technology, including Visual Studio .NET (the
suite of development tools) and the common language runtime (CLR), which is the
set of files that make up the core of all .NET applications. You’ll learn about these
items in more detail as you progress through this book. For now, realize that
Visual Basic is one of many languages that exist within the Visual Studio family.
Many other languages, such as C#, are also .NET languages, make use of the
CLR, and are developed within Visual Studio.

By the
Way

Creating a New Project 9

Visual Studio 2008 is a complete development environment, and it’s called the IDE

(short for integrated development environment). The IDE is the design framework

in which you build applications; every tool you’ll need to create your Visual Basic

projects is accessed from within the Visual Basic IDE. Again, Visual Studio 2008 sup-

ports development using many different languages, Visual Basic being the most

popular. The environment itself is not Visual Basic, but the language you’ll be using

within Visual Studio 2008 is Visual Basic. To work with Visual Basic projects, you

first start the Visual Studio 2008 IDE.

Start Visual Studio 2008 now by choosing Microsoft Visual Basic 2008 Express

Edition from the Start/Programs menu. If you are running the full retail version of

Visual Studio, your shortcut may have a different name. In this case, locate the

shortcut on the Start menu and click it once to start the Visual Studio 2008 IDE.

Creating a New Project
When you first start Visual Studio 2008, you see the Start Page tab within the IDE,

as shown in Figure 1.1. You can open projects created previously or create new proj-

ects from this Start page. For this quick tour, you’ll create a new Windows applica-

tion, so select File, New Project to display the New Project dialog box, shown in

Figure 1.2.

FIGURE 1.1
You can open
existing projects
or create new
projects from
the Visual
Studio Start
page.

10 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

If your Start page doesn’t look like the one shown in Figure 1.1, chances are that
you’ve changed the default settings. In Hour 2, “Navigating Visual Basic 2008,” I’ll
show you how to change them back.

By the
Way

FIGURE 1.2
The New Project
dialog box
enables you to
create many
types of .NET
projects.

The New Project dialog box is used to specify the type of Visual Basic project to cre-

ate. (You can create many types of projects with Visual Basic, as well as with the

other supported languages of the .NET Framework.) The options shown in Figure 1.2

are limited because I am running the Express edition of Visual Basic for all exam-

ples in this book. If you are running the full version of Visual Studio, you will have

many more options available.

Create a new Windows Forms Application now by following these steps:

1. Make sure that the Windows Forms Application icon is selected. (If it’s not,

click it once to select it.)

2. At the bottom of the New Project dialog box is a Name text box. This is where,

oddly enough, you specify the name of the project you’re creating. Enter

Picture Viewer in the Name text box.

3. Click OK to create the project.

Always set the Name text box to something meaningful before creating a project,
or you’ll have more work to do later if you want to move or rename the project.

Did you
Know?

Creating a New Project 11

When Visual Basic creates a new Windows Forms Application project, it adds one

form (the empty gray window) for you to begin building the interface for your

application, as shown in Figure 1.3.

Within Visual Studio 2008, form is the term given to the design-time view of a win-
dow that can be displayed to a user.

By the
Way

FIGURE 1.3
New Windows
Forms
Applications
start with a
blank form; the
fun is just
beginning!

Your Visual Studio 2008 environment might look different from that shown in the

figures in this hour due to the edition of Visual Studio 2008 you’re using, whether

you’ve already played with Visual Studio 2008, and other factors, such as your mon-

itor’s resolution. All the elements discussed in this hour exist in all editions of Visual

Studio 2008, however. (If a window shown in a figure doesn’t appear in your IDE,

use the View menu to display it.)

To create a program that can be run on another computer, you start by creating a
project and then compiling the project into a component such as an executable
(a program a user can run) or a DLL (a component that can be used by other pro-
grams and components). The compilation process is discussed in detail in Hour
23. The important thing to note at this time is that when you hear someone refer
to creating or writing a program, just as you’re creating the Picture Viewer program
now, that person is referring to the completion of all steps up to and including
compiling the project to a distributable file.

By the
Way

12 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Understanding the Visual Studio 2008
Environment
The first time you run Visual Studio 2008, you’ll notice that the IDE contains a num-

ber of windows, such as the Properties window on the right, which is used to view

and set properties of objects. In addition to these windows, the IDE contains a num-

ber of tabs, such as the vertical Toolbox tab on the left edge of the IDE (refer to

Figure 1.3). Try this now: Click the Toolbox tab to display the Toolbox window (click-

ing a tab displays an associated window). You can hover the mouse over a tab for a

few seconds to display the window as well. To hide the window, simply move the

mouse off the window (if you hovered over the tab to display it) or click another

window. To close the window, click the Close (X) button in the window’s title bar.

If you opened the toolbox by clicking its tab rather than hovering over the tab, the
toolbox will not automatically close. Instead, it will stay open until you click
another window.

You can adjust the size and position of any of these windows, and you can even

hide and show them as needed. You’ll learn how to customize your design environ-

ment in Hour 2.

Unless specifically instructed to do so, don’t double-click anything in the Visual
Studio 2008 design environment. Double-clicking most objects produces an
entirely different result than single-clicking does. If you mistakenly double-click an
object on a form (discussed shortly), a code window appears. At the top of the
code window is a set of tabs: one for the form design and one for the code. Click
the tab for the form design to hide the code window, and return to the form.

The Properties window on the right side of the design environment is perhaps the

most important window in the IDE, and it’s the one you’ll use most often. If your

computer display resolution is set to 800×600, you can probably see only a few prop-

erties at this time. This makes it difficult to view and set properties as you create

projects. All the screen shots in this book were captured at 800×600 due to size con-

straints, but you should run at a higher resolution if you can. I highly recommend

that you develop applications with Visual Basic at a screen resolution of 1024×768

or higher to have plenty of work space. To change your display settings, right-click

the desktop and select Personalize. Keep in mind, however, that end users might be

running at a lower resolution than you are using for development.

By the
Way

Watch
Out!

Changing the Characteristics of Objects 13

Changing the Characteristics of Objects
Almost everything you work with in Visual Basic is an object. Forms, for instance,

are objects, as are all the items you can put on a form to build an interface, such as

list boxes and buttons. There are many types of objects, and objects are classified by

type. For example, a form is a Form object, whereas items you can place on a form

are called Control objects, or controls. (Hour 3, “Understanding Objects and

Collections,” discusses objects in detail.) Some objects don’t have a physical appear-

ance but exist only in code. You’ll learn about these kinds of objects in later hours.

You’ll find that I often mention material coming up in future chapters. In the pub-
lishing field, we call these forward references. For some reason, these tend to
unnerve some people. I do this only so that you realize you don’t have to fully
grasp a subject when it’s first presented; the material will be covered in more
detail later. I try to keep forward references to a minimum, but unfortunately,
teaching programming is not a perfectly linear process. There will be times I’ll
have to touch on a subject that I feel you’re not ready to dive into fully yet. When
this happens, I give you a forward reference to let you know that the subject will
be covered in greater detail later.

Every object has a distinct set of attributes known as properties (regardless of

whether the object has a physical appearance). Properties define the characteristics

of an object. Even you have certain properties, such as your height and hair color.

Visual Basic objects have properties as well, such as Height and BackColor. When

you create a new object, the first thing you need to do is set its properties so that the

object appears and behaves the way you want it to. To display an object’s properties,

click the object in its designer (the main work area in the IDE).

Click anywhere in the default form now, and check to see that its properties are dis-

played in the Properties window. You’ll know because the drop-down list box at the

top of the Properties window will contain the form’s name: Form1

System.Windows.Forms.Form. Form1 is the name of the object, and

System.Windows.Forms.Form is the type of object.

Naming Objects
The property you should always set first when creating any new object is the Name

property. Press F4 to display the Properties window (if it’s not already visible), and

scroll toward the top of the properties list until you see the (Name) property, as

shown in Figure 1.4. If the Name property isn’t one of the first properties listed, the

Watch
Out!

14 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Properties window is set to show properties categorically instead of alphabetically.

You can show the list alphabetically by clicking the Alphabetical button that

appears just above the properties grid.

FIGURE 1.4
The Name prop-
erty is the first
property you
should change
when you add a
new object to
your project.

I recommend that you keep the Properties window set to show properties in alpha-
betical order; doing so makes it easier to find properties that I refer to in the text.
Note that the Name property always stays toward the top of the list and is called
(Name). If you’re wondering why it has parentheses around it, it’s because the
parentheses force the property to the top of the list, because symbols come
before letters in an alphabetical sort.

When saving a project, you choose a name and a location for the project and its

files. When you first create an object within the project, Visual Basic gives the object

a unique, generic name based on the object’s type. Although these names are func-

tional, they simply aren’t descriptive enough for practical use. For instance, Visual

Basic named your form Form1, but it’s common to have dozens (or even hundreds)

of forms in a project. It would be extremely difficult to manage such a project if all

forms were distinguishable only by a number (Form2, Form3, and so forth).

By the
Way

Changing the Characteristics of Objects 15

What you’re actually working with is a form class, or template, that will be used to
create and show forms at runtime. For the purposes of this quick tour, I simply
call it a form. See Hour 5, “Building Forms: The Basics,” for more information.

To better manage your forms, give each one a descriptive name. Visual Basic gives

you the chance to name new forms as they’re created in a project. Visual Basic cre-

ated this default form for you, so you didn’t get a chance to name it. It’s important

not only to change the form’s name but also to change its filename. Change the

programmable name and the filename by following these steps:

1. Click the Name property, and change the text from Form1 to ViewerForm.

Notice that this does not change the form’s filename as it’s displayed in the

Solution Explorer window, located above the Properties window.

2. Right-click Form1.vb in the Solution Explorer window (the window above the

Properties window).

3. Choose Rename from the context menu that appears.

4. Change the text from Form1.vb to ViewerForm.vb.

I use the Form suffix here to denote that the file is a form class. Suffixes are
optional, but I find that they really help you keep things organized.

The form’s Name property is actually changed for you automatically when you

rename the file. In future examples, I will have you rename the form file so that the

Name property is changed automatically. I had you set it in the Properties window

here so that you could see how the Properties window works.

Setting the Text Property of the Form
Notice that the text that appears in the form’s title bar says Form1. This is because

Visual Basic sets the form’s title bar to the name of the form when it’s first created but

doesn’t change it when you change the name of the form. The text in the title bar is

determined by the value of the form’s Text property. Change the text now by follow-

ing these steps:

1. Click the form once more so that its properties appear in the Properties

window.

2. Use the scrollbar in the Properties window to locate the Text property.

By the
Way

By the
Way

16 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

3. Change the text to Picture Viewer. Press the Enter key or click a different

property. You’ll see the text in the title bar of the form change.

Saving a Project
The changes you’ve made so far exist only in memory. If you were to turn off your

computer at this time, you would lose all your work up to this point. Get into the

habit of frequently saving your work, which commits your changes to disk.

Click the Save All button on the toolbar (the picture of a stack of floppy disks) now

to save your work. Visual Basic displays the Save Project dialog box, shown in Figure

1.5. Notice that the Name property is already filled in because you named the project

when you created it. The Location text box is where you specify the location in

which to save the project. Visual Basic creates a subfolder in this location using the

value in the Name text box (in this case, Picture Viewer). You can use the default

location or change it to suit your purposes. You can have Visual Basic create a solu-

tion folder in which the project folder gets placed. On large projects, this is a handy

feature. For now, it’s an unnecessary step, so uncheck the Create directory for solu-

tion box, and then click Save to save the project.

FIGURE 1.5
When saving a
project, choose
a name and
location for
the project and
its files.

Giving the Form an Icon
Everyone who’s used Windows is familiar with icons—the little pictures that repre-

sent programs. Icons most commonly appear on the Start menu next to the name of

their respective programs. In Visual Basic, not only do you have control over the

icon of your program file, you also can give every form in your program a unique

icon if you want to.

The following instructions assume that you have access to the source files for the
examples in this book. They are available at http://www.samspublishing.com. You
can also get these files, as well as discuss this book, at my website at http://
www.jamesfoxall.com/books.aspx. When you unzip the samples, a folder will be
created for each hour, and within each hour’s folder will be subfolders for the sam-
ple projects. You’ll find the icon for this example in the folder Hour 01\Picture
Viewer.

By the
Way

http://www.samspublishing.com
http://www.jamesfoxall.com/books.aspx
http://www.jamesfoxall.com/books.aspx

Changing the Characteristics of Objects 17

You don’t have to use the icon I’ve provided for this example; you can use any
icon. If you don’t have an icon available (or you want to be a rebel), you can skip
this section without affecting the outcome of the example.

To give the form an icon, follow these steps:

1. In the Properties window, click the Icon property to select it.

2. When you click the Icon property, a small button with three dots appears to

the right of the property. Click this button.

3. Use the Open dialog box that appears to locate the Picture Viewer.ico file or

another icon file of your choice. When you’ve found the icon, double-click it,

or click it once to select it and then choose Open.

After you’ve selected the icon, it appears in the Icon property along with the word

“Icon.” A small version of the icon appears in the upper-left corner of the form as

well. Whenever this form is minimized, this is the icon displayed on the Windows

taskbar.

This doesn’t change the icon for the project as a whole. In Hour 23, you’ll learn
how to assign an icon to your distributable file.

Changing the Size of the Form
Next, you’ll change the form’s Width and Height properties. The Width and Height

values are shown collectively under the Size property; Width appears to the left of

the comma, and Height to the right. You can change the Width or Height property

by changing the corresponding number in the Size property. Both values are repre-

sented in pixels. (That is, a form that has a Size property of 200,350 is 200 pixels

wide and 350 pixels tall.) To display and adjust the Width and Height properties

separately, click the small plus sign (+) next to the Size property (see Figure 1.6).

(After you click it, it changes to a minus sign (–).)

A pixel is a unit of measurement for computer displays; it’s the smallest visible
“dot” on the screen. The resolution of a display is always given in pixels, such as
800×600 or 1024×768. When you increase or decrease a property by one pixel,
you’re making the smallest possible visible change to the property.

By the
Way

By the
Way

18 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Change the Width property to 400 and the Height to 325 by typing in the corre-

sponding box next to a property name. To commit a property change, press Tab or

Enter, or click a different property or window. Your screen should now look like the

one shown in Figure 1.7.

FIGURE 1.6
Some proper-
ties can be
expanded to
show more spe-
cific properties.

FIGURE 1.7
Changes made
in the
Properties
window are
reflected as
soon as they’re
committed.

You can also size a form by dragging its border, which you’ll learn about in Hour 2,
or by changing its properties using code, which you’ll learn how to write in Hour 5.

By the
Way

Adding Controls to a Form 19

Save the project now by choosing File, Save All from the menu or by clicking the

Save All button on the toolbar—it has a picture of stacked floppy disks.

Adding Controls to a Form
Now that you’ve set the initial properties of your form, it’s time to create a user

interface by adding objects to the form. Objects that can be placed on a form are

called controls. Some controls have a visible interface with which a user can inter-

act, whereas others are always invisible to the user. You’ll use controls of both types

in this example. On the left side of the screen is a vertical tab titled Toolbox. Click

the Toolbox tab to display the Toolbox window, and click the plus sign next to

Common Controls to see the most commonly used controls (see Figure 1.8). The tool-

box contains all the controls available in the project, such as labels and text boxes.

FIGURE 1.8
The toolbox is
used to select
controls to build
a user interface.

The toolbox closes as soon as you’ve added a control to a form and when the

pointer is no longer over the toolbox. To make the toolbox stay visible, you would

click the little picture of a pushpin located in the toolbox’s title bar.

20 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

I don’t want you to add them yet, but your Picture Viewer interface will consist of

the following controls:

. Two Button controls: The standard buttons that you’re used to clicking in

pretty much every Windows program you’ve ever run

. A PictureBox control: A control used to display images to a user

. An OpenFileDialog control: A hidden control that exposes the Windows

Open File dialog box functionality

Designing an Interface
It’s generally best to design a form’s user interface and then add the code behind the

interface to make the form functional. You’ll build your interface in the following

sections.

Adding a Visible Control to a Form
Start by adding a Button control to the form. Do this by double-clicking the Button

item in the toolbox. Visual Basic creates a new button and places it in the upper-left

corner of the form, as shown in Figure 1.9.

FIGURE 1.9
When you
double-click a
control in the
toolbox, the
control is added
to the upper-left
corner of the
form.

Using the Properties window, set the button’s properties as shown in the following

list. Remember, when you view the properties alphabetically, the Name property is

listed first, so don’t go looking for it down in the list, or you’ll be looking a while.

Designing an Interface 21

Property Value

Name btnSelectPicture

Location 295,10 (295 is the x coordinate; 10 is the y coordinate.)

Size 85,23

Text Select Picture

Now you’ll create a button that the user can click to close the Picture Viewer pro-

gram. Although you could add another new button to the form by double-clicking

the Button control on the toolbox again, this time you’ll add a button to the form

by creating a copy of the button you’ve already defined. This allows you to easily

create a button that maintains the size and other style attributes of the original but-

ton when the copy was made.

To do this, right-click the Select Picture button, and choose Copy from its context

menu. Next, right-click anywhere on the form, and choose Paste from the form’s

shortcut menu. (You can also use the keyboard shortcuts Ctrl+C to copy and Ctrl+V

to paste.) The new button appears centered on the form, and it’s selected by default.

Notice that it retains almost all the properties of the original button, but the name

has been reset. Change the properties of the new button as follows:

Property Value

Name btnQuit

Location 295,40

Text Quit

The last visible control you need to add to the form is a PictureBox control. A

PictureBox has many capabilities, but its primary purpose is to show pictures,

which is precisely what you’ll use it for in this example. Add a new PictureBox con-

trol to the form by double-clicking the PictureBox item in the toolbox, and set its

properties as follows:

Property Value

Name picShowPicture

BorderStyle FixedSingle

Location 8,8

Size 282,275

22 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

After you’ve made these property changes, your form will look like the one shown in

Figure 1.10. Click the Save All button on the toolbar to save your work.

FIGURE 1.10
An application’s
interface
doesn’t have
to be complex
to be useful.

Adding an Invisible Control to a Form
All the controls you’ve used so far sit on a form and have a physical appearance

when a user runs the application. Not all controls have a physical appearance,

however. Such controls, called nonvisual controls (or invisible-at-runtime

controls), aren’t designed for direct user interactivity. Instead, they’re designed to

give you, the programmer, functionality beyond the standard features of Visual

Basic.

To enable users to select a picture to display, you need to give them the ability to

locate a file on their hard drives. You might have noticed that whenever you choose

to open a file from within any Windows application, the dialog box displayed is

almost always the same. It doesn’t make sense to force every developer to write the

code necessary to perform standard file operations, so Microsoft has exposed the

functionality via a control that you can use in your projects. This control is called

OpenFileDialog, and it will save you dozens of hours that would otherwise be nec-

essary to duplicate this common functionality.

Other controls in addition to the OpenFileDialog control give you file functional-
ity. For example, the SaveFileDialog control provides features for allowing the
user to specify a filename and path for saving a file.

Display the toolbox and scroll down using the down arrow in the lower part of the

toolbox until you can see the OpenFileDialog control (it’s in the Dialogs category),

By the
Way

Designing an Interface 23

and then double-click it to add it to your form. Note that the control isn’t placed on

the form; rather, it appears in a special area below the form (see Figure 1.11). This

happens because the OpenFileDialog control has no form interface to display to

the user. It does have an interface (a dialog box) that you can display as necessary,

but it has nothing to display directly on a form.

FIGURE 1.11
Controls that
have no inter-
face appear
below the form
designer.

Select the OpenFileDialog control, and change its properties as follows:

Property Value

Name ofdSelectPicture

Filename <make empty>

Filter Windows Bitmaps|*.BMP|JPEG Files|*.JPG

Title Select Picture

Don’t actually enter the text <make empty> for the filename; I really mean delete
the default value and make this property value empty.

The Filter property is used to limit the types of files that will be displayed in the

Open File dialog box. The format for a filter is description|filter. The text that

Watch
Out!

24 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

appears before the first pipe symbol is the descriptive text of the file type, whereas

the text after the pipe symbol is the pattern to use to filter files. You can specify

more than one filter type by separating each description|filter value with another

pipe symbol. Text entered into the Title property appears in the title bar of the

Open File dialog box.

The graphical interface for your Picture Viewer program is now finished. If you

pinned the toolbox open, click the pushpin in the title bar of the toolbox now to

close it.

Writing the Code Behind an Interface
You have to write code for the program to be capable of performing tasks and

responding to user interaction. Visual Basic is an event-driven language, which

means that code is executed in response to events. These events might come from

users, such as a user clicking a button and triggering its Click event, or from

Windows itself (see Hour 4, “Understanding Events,” for a complete explanation of

events). Currently, your application looks nice, but it won’t do a darn thing. Users

can click the Select Picture button until they can file for disability with carpel tunnel

syndrome, but nothing will happen, because you haven’t told the program what to

do when the user clicks the button. You can see this for yourself now by pressing F5

to run the project. Feel free to click the buttons, but they don’t do anything. When

you’re finished, close the window you created to return to Design mode.

You’ll write code to accomplish two tasks. First, you’ll write code that lets users

browse their hard drives to locate and select a picture file and then display it in the

picture box (this sounds a lot harder than it is). Second, you’ll add code to the Quit

button that shuts down the program when the user clicks the button.

Letting a User Browse for a File
The first bit of code you’ll write enables users to browse their hard drives, select a

picture file, and then see the selected picture in the PictureBox control. This code

executes when the user clicks the Select Picture button; therefore, it’s added to the

Click event of that button.

When you double-click a control on a form in Design view, the default event for that

control is displayed in a code window. The default event for a Button control is its

Click event, which makes sense, because clicking is the most common action a user

performs with a button. Double-click the Select Picture button now to access its

Click event in the code window (see Figure 1.12).

Writing the Code Behind an Interface 25

FIGURE 1.12
You’ll write all
your code in a
window such
as this.

When you access an event, Visual Basic builds an event handler, which is essen-

tially a template procedure in which you add the code that executes when the event

occurs. The cursor is already placed within the code procedure, so all you have to do

is add code. Although this may seem daunting, by the time you’re finished with this

book, you’ll be madly clicking and clacking away as you write your own code to

make your applications do exactly what you want them to do—well, most of the

time. For now, just enter the code as I present it here.

It’s important that you get in the habit of commenting your code, so the first state-

ment you’ll enter is a comment. Beginning a statement with an apostrophe (') des-

ignates that statement as a comment. The compiler won’t do anything with the

statement, so you can enter whatever text you want after the apostrophe. Type the

following statement exactly as it appears, and press the Enter key at the end of

the line:

‘ Show the open file dialog box.

The next statement you’ll enter triggers a method of the OpenFileDialog control

that you added to the form. Think of a method as a mechanism to make a control

do something. The ShowDialog() method tells the control to show its Open dialog

box and let the user select a file. The ShowDialog() method returns a value that

indicates its success or failure, which you’ll then compare to a predefined result

(DialogResult.OK). Don’t worry too much about what’s happening here; you’ll be

26 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

learning the details of all this in later hours. The sole purpose of this hour is to get

your feet wet. In a nutshell, the ShowDialog() method is invoked to let a user

browse for a file. If the user selects a file, more code is executed. Of course, there’s a

lot more to using the OpenFileDialog control than I present in this basic example,

but this simple statement gets the job done. Enter the following statement and press

Enter to commit the code (don’t worry about capitalization; Visual Basic will fix the

case for you!):

If ofdSelectpicture.ShowDialog = DialogResult.OK Then

After you insert the statement that begins with If and press Enter, Visual Basic
automatically creates the End If statement for you. If you type in End If, you’ll
wind up with two End If statements, and your code won’t run. If this happens,
delete one of the statements. Hour 13, “Making Decisions in Visual Basic Code,”
has all the details on the If statement.

It’s time for another comment. The cursor is currently between the statement that

starts with If and the End If statement. Leave the cursor there and type the follow-

ing statement, remembering to press Enter at the end of the line:

‘ Load the picture into the picture box.

Don’t worry about indenting the code by pressing the Tab key or using spaces.
Visual Basic automatically indents code for you.

This next statement, which appears within the If construct (between the If and

End If statements), is the line of code that actually displays the picture in the

picture box.

Enter the following statement:

picshowpicture.Image = Image.FromFile(ofdselectpicture.filename)

In addition to displaying the selected picture, your program also displays the path

and filename of the picture in the title bar. When you first created the form, you

changed its Text property using the Properties window. To create dynamic applica-

tions, properties need to be constantly adjusted at runtime, and you do this using

code. Insert the following two statements, pressing Enter at the end of each line:

‘ Show the name of the file in the form’s caption.
Me.Text = “Picture Viewer(“ & ofdselectpicture.FileName & “)”

By the
Way

Did you
Know?

Writing the Code Behind an Interface 27

After you’ve entered all the code, your editor should look like that shown in

Figure 1.13.

FIGURE 1.13
Make sure that
your code
exactly matches
the code shown
here.

Terminating a Program Using Code
The last bit of code you’ll write terminates the application when the user clicks the

Quit button. To do this, you’ll need to access the Click event handler of the

btnQuit button. At the top of the code window are two tabs. The current tab says

ViewerForm.vb*. This tab contains the code window for the form that has the file-

name ViewerForm.vb. Next to this is a tab that says ViewerForm.vb [Design]*. Click

this tab to switch from Code view to the form designer. If you receive an error when

you click the tab, the code you entered contains an error, and you need to edit it to

make it the same as shown in Figure 1.13. After the form designer appears, double-

click the Quit button to access its Click event.

Enter the following code in the Quit button’s Click event handler; press Enter at the

end of each statement:

‘ Close the window and exit the application
Me.Close()

28 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

The Me.Close() statement closes the current form. When the last loaded form in
a program is closed, the application shuts itself down—completely. As you build
more robust applications, you’ll probably want to execute all kinds of cleanup rou-
tines before terminating an application, but for this example, closing the form is
all you need to do.

Running a Project
Your application is now complete. Click the Save All button on the toolbar (the stack

of floppy disks), and then run your program by pressing F5. You can also run the

program by clicking the button on the toolbar that looks like a right-facing triangle

and resembles the Play button on a DVD player. (This button is called Start, and it

can also be found on the Debug menu.) Learning the keyboard shortcuts will make

your development process move along faster, so I recommend that you use them

whenever possible.

When you run the program, the Visual Basic interface changes, and the form you’ve

designed appears, floating over the design environment (see Figure 1.14).

By the
Way

FIGURE 1.14
When in Run
mode, your pro-
gram executes
the same as it
would for an
end user.

You are now running your program as though it were a stand-alone application

running on another user’s machine; what you see is exactly what users would see if

they ran the program (without the Visual Studio 2008 design environment in the

background, of course). Click the Select Picture button to display the Select Picture

dialog box, shown in Figure 1.15. Use this dialog box to locate a picture file. When

you’ve found a file, double-click it, or click once to select it and then click Open. The

selected picture is then displayed in the picture box, as shown in Figure 1.16.

If you want to select and display a picture from your digital camera, chances are
the format is JPEG, so you’ll need to select this from the Files of Type drop-down.
Also, if your image is very large, you’ll see only the upper-left corner of the image
(what fits in the picture box). In later hours, I’ll show you how you can scale the
image to fit the picture box, and even resize the form to show a larger picture in
its entirety.

Running a Project 29

When you click the Select Picture button, the default path shown depends on
the last active path in Windows, so it might be different for you than shown in
Figure 1.15.

By the
Way

FIGURE 1.15
The
OpenFileDialog
control handles
all the details of
browsing for files.
Cool, huh?

FIGURE 1.16
What could be
prettier than a
1964 Fender
Super Reverb
amplifier?

By the
Way

30 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Summary
When you’re finished playing with the program, click the Quit button to return to

Design view.

That’s it! You’ve just created a bona fide Visual Basic program. You’ve used the tool-

box to build an interface with which users can interact with your program, and

you’ve written code in strategic event handlers to empower your program to do

things. These are the basics of application development in Visual Basic. Even the

most complicated programs are built using this fundamental approach; you build

the interface and add code to make the application do things. Of course, writing

code to do things exactly the way you want things done is where the process can get

complicated, but you’re on your way.

If you take a close look at the organization of the hours in this book, you’ll see that

I start out by teaching you the Visual Basic (Visual Studio .NET) environment. I then

move on to building an interface, and later I teach you about writing code. This

organization is deliberate. You might be eager to jump in and start writing serious

code, but writing code is only part of the equation—don’t forget the word Visual in

Visual Basic. As you progress through the hours, you’ll build a solid foundation of

development skills.

Soon, you’ll pay no attention to the man behind the curtain—you’ll be that man (or

woman)!

Q&A
Q. Can I show bitmaps of file types other than BMP and JPG?

A. Yes. PictureBox supports the display of images with the extensions BMP, JPG,

ICO, EMF, WMF, and GIF. PictureBox can even save images to a file using

any of the supported file types.

Q. Is it possible to show pictures in other controls?

A. PictureBox is the control to use when you are just displaying images.

However, many other controls allow you to display pictures as part of the con-

trol. For instance, you can display an image on a button control by setting the

button’s Image property to a valid picture.

Workshop 31

Workshop

Quiz
1. What type of Visual Basic project creates a standard Windows program?

2. What window is used to change the attributes (location, size, and so on) of a

form or control in the IDE?

3. How do you access the default event (code) of a control?

4. What property of a picture box do you set to display an image?

5. What is the default event for a button control?

Answers
1. Windows Forms Application

2. The Properties window

3. Double-click the control in the designer.

4. The Image property

5. The Click event

Exercises
1. Change your Picture Viewer program so that the user can also locate and

select GIF files. (Hint: Change the Filter property of the OpenFileDialog

control.)

2. Create a new project with a new form. Create two buttons on the form, one

above the other. Next, change their position so that they appear next to each

other.

This page intentionally left blank

